Exercise 302

An investment is compounded monthly, quarterly, or yearly and is given by the function $A = P\left(1 + \frac{j}{n}\right)^{nt}$, where A is the value of the investment at time t, P is the initial principle that was invested, j is the annual interest rate, and n is the number of time the interest is compounded per year. Given a yearly interest rate of 3.5% and an initial principle of \$100,000, find the amount A accumulated in 5 years for interest that is compounded a. daily, b., monthly, c. quarterly, and d. yearly.

[TYPO: Replace "time" with "times."]

Solution

Assign values to each of the variables.

${\cal P}$ is the initial principle that was invested	\Rightarrow	P = 100,000
j is the annual interest rate	\Rightarrow	j = 0.035
find the amount A accumulated in 5 years	\Rightarrow	t = 5

Part (a)

If the interest is compounded daily, then it compounds 365 times per year: n = 365.

$$A(5) = 100,000 \left(1 + \frac{0.35}{365}\right)^{365(5)} \approx 574,977.94$$

Part (b)

If the interest is compounded monthly, then it compounds 12 times per year: n = 12.

$$A(5) = 100,000 \left(1 + \frac{0.35}{12}\right)^{12(5)} \approx 561,232.35$$

Part (c)

If the interest is compounded quarterly, then it compounds 4 times per year: n = 4.

$$A(5) = 100,000 \left(1 + \frac{0.35}{4}\right)^{4(5)} \approx 535,285.29$$

Part (d)

If the interest is compounded yearly, then it compounds 1 time per year: n = 1.

$$A(5) = 100,000 \left(1 + \frac{0.35}{1}\right)^{1(5)} \approx 448,403.34$$