Exercise 302

An investment is compounded monthly, quarterly, or yearly and is given by the function $A=P\left(1+\frac{j}{n}\right)^{n t}$, where A is the value of the investment at time t, P is the initial principle that was invested, j is the annual interest rate, and n is the number of time the interest is compounded per year. Given a yearly interest rate of 3.5% and an initial principle of $\$ 100,000$, find the amount A accumulated in 5 years for interest that is compounded a. daily, b., monthly, c. quarterly, and d. yearly.
[TYPO: Replace "time" with "times."]

Solution

Assign values to each of the variables.

P is the initial principle that was invested	\Rightarrow	$P=100,000$
j is the annual interest rate	\Rightarrow	$j=0.035$
find the amount A accumulated in 5 years	\Rightarrow	$t=5$

Part (a)

If the interest is compounded daily, then it compounds 365 times per year: $n=365$.

$$
A(5)=100,000\left(1+\frac{0.35}{365}\right)^{365(5)} \approx 574,977.94
$$

Part (b)

If the interest is compounded monthly, then it compounds 12 times per year: $n=12$.

$$
A(5)=100,000\left(1+\frac{0.35}{12}\right)^{12(5)} \approx 561,232.35
$$

Part (c)

If the interest is compounded quarterly, then it compounds 4 times per year: $n=4$.

$$
A(5)=100,000\left(1+\frac{0.35}{4}\right)^{4(5)} \approx 535,285.29
$$

Part (d)

If the interest is compounded yearly, then it compounds 1 time per year: $n=1$.

$$
A(5)=100,000\left(1+\frac{0.35}{1}\right)^{1(5)} \approx 448,403.34
$$

